
Breaking Bridgefy, again:
Adopting libsignal is not enough

Martin R. Albrecht
Information Security Group,

Royal Holloway, University of London

Raphael Eikenberg
Applied Cryptography Group,

ETH Zurich

Kenneth G. Paterson
Applied Cryptography Group,

ETH Zurich

Abstract
Bridgefy is a messaging application that uses Bluetooth-based
mesh networking. Its developers and others have advertised
it for use in areas witnessing large-scale protests involving
confrontations between protesters and state agents. In August
2020, a security analysis reported severe vulnerabilities that
invalidated Bridgefy’s claims of confidentiality, authentica-
tion, and resilience. In response, the developers adopted the
Signal protocol and then continued to advertise their applica-
tion as being suitable for use by higher-risk users.

In this work, we analyse the security of the revised Bridgefy
messenger and SDK and invalidate its security claims. One
attack (targeting the messenger) enables an adversary to com-
promise the confidentiality of private messages by exploiting a
time-of-check to time-of-use (TOCTOU) issue, side-stepping
Signal’s guarantees. The other attack (targeting the SDK)
allows an adversary to recover broadcast messages without
knowing the network-wide shared encryption key.

We also found that the changes deployed in response to the
August 2020 analysis failed to remedy the previously reported
vulnerabilities. In particular, we show that (i) the protocol
persisted to be susceptible to an active attacker-in-the-middle,
(ii) an adversary continued to be able to impersonate other
users in the broadcast channel of the Bridgefy messenger,
(iii) the DoS attack using a decompression bomb was still
applicable, albeit in a limited form, and that (iv) the privacy
issues of Bridgefy remained largely unresolved.

1 Introduction

The messaging space has witnessed a rapid transformation
since the Snowden revelations in 2013. Since then, almost
all major messaging services enabled at least some form of
(optional) end-to-end encryption. In particular, many such
offerings, e.g. the Signal app itself, WhatsApp, Google’s Allo,
Skype – adopted the Signal protocol [18]. This move, to
strengthen privacy in light of reports of state surveillance,
expresses a general ethos in the messaging app community to

provide tools that can be relied upon and enable higher-risk
users, such as human rights activists [23]. However, the same
work [23] and follow up works [2, 37] also indicate a discon-
nect between what messaging app designers design for and
the needs of higher-risk users.

A visible expression of this disconnect is Bridgefy, a mobile
application and software development kit (SDK) that provides
communication capabilities over Bluetooth. It allows users to
form a mesh network to exchange messages without requiring
a connection to the Internet. Its primary target applications
are large events such as sports events where existing Internet
infrastructure may not be able to cope with demand. Yet, its
developers and others both report on the uptake of the ap-
plication and also actively promote the application for use
in protests and other situations of social unrest, where mo-
bile telecommunications and Internet connections may be
unreliable: during the 2019 Hong Kong protests [41, 57],
during protests in Iran, Lebanon and Zimbabwe [32, 59], for
Black Lives Matter protests in the US [58], after the military
coup in Myanmar [13, 63, 64], during farmers’ protests in
India [62], for anti-lockdown protests in the US [60], after
the Taliban retook Afghanistan [67]. According to the de-
velopers, the mobile application has been downloaded more
than 6.5 million times [61], often from areas witnessing con-
frontations between protesters and agents of the state.

While the actual adoption of Bridgefy by protesters and
activists seems to be somewhat limited [2], the spikes in down-
loads from areas witnessing conflicts suggest a need or desire
for robust peer-to-peer offline communication; a need not
catered to by more mainstream messaging platforms.1

On the other hand, the security track record of the Bridgefy
app – so heavily advertised to higher-risk users – is less than
stellar. In particular, in August 2020, a security analysis [1]
demonstrated: (i) An adversary could track Bridgefy users,
and produce a social graph of the mesh network, (ii) mes-
sages of users could be spoofed due to the lack of authentica-
tion mechanisms, (iii) an active attacker in the middle could

1Bridgefy is the market leader in the space of end-user mesh mes-
saging [1].



impersonate two users to each other and eavesdrop on the
communication, (iv) private messages were susceptible to a
padding oracle attack, and (v) a carefully crafted message
could either take down the entire network or prevent two par-
ticular users from communicating. In response, in October
2020, Bridgefy announced an overhaul of their security archi-
tecture [10] to address all these findings. The key technical
change implemented by Bridgefy was the adoption of the Sig-
nal protocol [27]. In addition, all traffic – including metadata
– is now also encrypted with a network-wide symmetric key
using AES in ECB mode. Since then, no public independ-
ent security assessment of the Bridgefy application has been
conducted, but Bridgefy started advertising their application
again for higher-risk scenarios [11].

It is thus a natural and pressing question to ask whether
these upgrades – adopting the Signal protocol and adding a
layer of deterministic encryption – succeed in establishing
a secure communication system. Indeed, we may ask more
generally if ‘we use Signal’ is a sufficient, well, signal to
indicate the security of applications produced by development
teams inexperienced in defensive coding.

Contributions. In this work, we report severe, practically ex-
ploitable vulnerabilities in the Bridgefy messenger in version
3.1.3 and the SDK in version 2.0.2, i.e. versions featuring the
above mentioned security enhancements.

In Section 3, we give an overview of the inner workings
of Bridgefy in version 3.1.3. We provide an outline of the
application architecture and the Bridgefy protocol.

For completeness, in Section 4 we first re-evaluate the vul-
nerabilities previously reported in [1] and find that they re-
main mostly entirely or insufficiently fixed. Specifically, for
Bridgefy 3.1.3 we show: (1) The protocol persisted to be
susceptible to an attacker in the middle. While the attack is
now limited to the first exchange between a pair of users –
it abuses the ‘trust on first use’ (TOFU) assumption – we
note that Bridgefy offers users no option to verify the public
keys of their contacts. (2) Broadcast messages continued to
be unauthenticated; an adversary can exploit this to mount
impersonation attacks. (3) The Denial of Service (DoS) attack
remained applicable, albeit in a limited form. (4) Bridgefy
users could still be tracked.

We then present two new attacks on Bridgefy. Our attack
in Section 5 breaks the confidentiality of Bridgefy’s Signal-
secured private chats by associating an attacker’s public key
with the session between two targets. It exploits a difference
in time that arises between queuing a message and fetching
the encryption key and, as such, is a time-of-check to time-
of-use (TOCTOU) vulnerability. We stress that our attack
does not threaten the security of the Signal protocol itself but
exclusively the way that libsignal is integrated into Bridgefy.

Our attack in Section 6 gives an adversary the ability to
recover broadcast messages from a small set of possible plain-
texts in the setting where the network-wide shared key is
unknown to the adversary. While in case of the Bridgefy ap-

plication itself we may assume the attacker knows this key,
this assumption would not hold for a third party application
utilising the Bridgefy SDK. It works because compression pre-
cedes encryption of packets. While it is well-known that this
choice can leak some information about plaintexts [40, 47], it
is non-trivial to exploit the leakage in the context of Bridgefy
and to perform plaintext recovery.

In Section 7, we discuss our results. In particular, we dis-
cuss how our work highlights that secure offline messaging is
still unsolved in practice.

Disclosure. We notified the Bridgefy developers about our
findings from Section 4 and the attack from Section 5 on
2021-05-21. The developers confirmed receipt some days
later and described their plans to remediate the vulnerabilities.
On 2021-07-21, the developers informed us they would not
publicly disclose the problems we reported, explaining they
feared putting their users’ safety at risk if they did. However,
they promised to remove the term ‘end-to-end’ from all of
their social media and blog posts.

In version 3.1.7 of the Bridgefy messenger, released on
2021-08-14, our exploit for the TOCTOU attack stopped work-
ing. Up until this point in time, the attack still worked as de-
scribed here. We found that Bridgefy also deployed changes
regarding the DoS attack from Section 4.3. The Bridgefy
SDK was not updated at all throughout the course of our re-
search, and continues to be vulnerable to the attacks described
herein. However, a note was added to its website some time
in 2021 indicating that the SDK was deprecated, contained
‘notable security vulnerabilities’ and was due to be replaced
by December 2021 [12].

We disclosed the attacks on Bridgefy’s broadcast encryp-
tion mechanism on 2021-09-07. On 2021-09-09, the de-
velopers informed us that they were aware of the vulnerability
and were actively working on fixing it. They did not inform
us of how they planned to do so.

We asked the developers to comment on the remediation
progress on 2022-02-04. At the time of finalising this paper,
two weeks later, the state of the remediation remained unclear.

2 Preliminaries

In this section, we introduce the concepts and technologies
that the following sections build on. We also give an overview
of related work in the broader context.

Terminology. We first briefly introduce non-standard terms
we use consistently in this paper.

• Messages and packets. When a user types a string s and
sends it to another user over the mesh network, the string
passes by multiple nodes, i.e. it is transmitted over multiple
hops. Obviously, s does not change over these hops but the
bytes transmitted between the nodes on the way change be-
cause the metadata of the packets differ. In other words, the



user triggers a single message, which propagates in the net-
work with the help of multiple packets.

• Payload content. When a user types a string s and sends it
to another user, we call s the payload content of the message
(and of the packets). This is to avoid confusion with the ter-
minology used by Bridgefy: a payload in Bridgefy is a map of
key-value pairs within a packet. The details of packet layouts
are discussed in Section 3.5.

• Simulation and attack samples. In the broadcast message
recovery attack, we have a simulation phase and an attack
phase. Both require us to gather packet lengths to form a
sample. The respective outputs will be a simulation sample
and an attack sample.

Bluetooth Low Energy (BLE). Bluetooth Low Energy is a
widely adopted wireless technology used in mobile and In-
ternet of Things (IoT) devices. Ryan [48] conducted an early
analysis of BLE security, demonstrating packet injection and
breaking the key exchange as part of the encryption. Sivak-
umaran and Blasco [53] showed that pairing protected BLE
data needs to be secured on the application layer in Android to
prevent co-located applications on the device from accessing
it. Wu, Nan, Kumar, Tian, Bianchi, Payer, and Xu [68] found
a weakness in the BLE specification that enabled an attacker
to impersonate a device to another. Zhang, Weng, Dey, Jin,
Lin, and Fu [69] reported practically exploitable downgrade
attacks on BLE.

Mesh Networks. A mesh network is based on a network topo-
logy where devices connect without following a hierarchical
structure [17]: ‘In mesh topologies, network nodes are dir-
ectly and dynamically connected in a non-hierarchical way
[. . . ]. Moreover, mesh networks do not require an infrastruc-
ture, since they dynamically self-organise and configure them-
selves.’ A mesh topology is especially useful when the goal
is to build a decentralised network: devices route incoming
traffic to their neighbours, such that each packet eventually
reaches its destination. Popular protocols that use a mesh to-
pology are Bluetooth Mesh [50], Zigbee [3], and Thread [36].
Note that Bluetooth Mesh is a dedicated technology that is
not to be confused with mesh networks where the links are
normal Bluetooth LE connections.

Signal and libsignal. Signal [52] is a messaging applica-
tion that enables end-to-end encrypted communication. Its
security guarantees stem from the Signal cryptographic pro-
tocol, which was developed progressively as part of the Signal
application. The protocol was subject to an extensive study
by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [18],
who analysed the key agreement and the ratcheting mechan-
ism of Signal. Their analysis revealed no significant flaws in
its design.

The Signal protocol is available as an official implement-
ation in Java called libsignal-protocol-java [51] under
the GNU General Public License v3.0. The library can be
used to provide end-to-end encrypted communication for ap-
plications other than Signal.

In the interface of the library, endpoints are identified by
a SignalProtocolAddress. This type is a combination of a
name that identifies the user and a deviceId that is unique
for each device a user owns. Before two endpoints can com-
municate, one party needs to retrieve a ‘prekey bundle’ (PKB)
of the other and use it to send an initial message. Here we
may assume that the PKB acts like a public key: it contains
all information to establish a secure session between the two
parties, but it needs to be authentic. If an adversary was able to
change the PKB for their own, the session would not be secure.
In the Signal messenger, the server is hence trusted until the
two communicating parties manually verify the authenticity
of their session.

Time-of-Check to Time-of-Use (TOCTOU). Time-of-Check
to Time-of-Use vulnerabilities [65, pg. 157] exploit a change
in state between when a certain property is checked and
used [56]. Bishop and Dilger [6] were among the first to
describe this class of vulnerabilities and studied them in the
context of file systems.

MessagePack. MessagePack [24] is a data format for object
serialisation, similar to JSON, YAML, and TOML [8, 22, 44].
It supports various primitive types like integers, booleans,
floats, strings, arrays, and maps. A key difference between
MessagePack and its counterparts is that the format is binary,
allowing for more compactness.

The specification of MessagePack is available on Git-
Hub [30]. In general, an object is converted by sequentially
lining up the respective formats for all values of an object.
For example, given an object made of two boolean values, the
serialised form is a concatenation of the formats for these two
boolean values.

The format of a value is defined in the specification. For
instance, the boolean values false and true convert to the
fixed bytes 0xc2 and 0xc3 respectively. Values with variable
length convert into formats that contain not just the value
but also their size. A string with a length of up to 31 bytes
converts into a leading byte b, followed by the ASCII en-
coding of the string. b is a composition of form 101XXXXX,
where the placeholder XXXXX refers to the size of the string.
For example, the string ‘id’ converts to the bytes 0xa2 0x69
0x64. Here b = a216 = 101000102, followed by the ASCII
representations of ‘i’ and ‘d’.

Maps – which map from keys to values – work similar to
strings. They also start with a byte b, for maps with up to 15
elements of form 1000XXXX, where XXXX now refers to the
number n of key-value pairs. b is followed by 2n formats: odd
elements are keys, and even elements are the value for the
preceding key.



Magic Bytes
(2B)

Flags
(1B) Modification Time (4B)

Extra
Flags
(1B)

OS
(1B)

CRC-32 (4B) Uncompressed Size (4B)

DEFLATE data (variable size)

Compression
Method (1B)

Figure 1: The file format of gzip. The ‘Flags’ field has influ-
ence over the structure of the file format after the ‘Operating
System’ field. Here we assume that no flags are set.

Compression in Cryptography. The use of compression in
combination with an encryption scheme was shown to be able
to affect the security of that system through a side-channel
in Kelsey [40]. Later Rizzo and Duong [47] showed with
the CRIME attack that an attacker could recover secret web
cookies based on a chosen-plaintext attack together with in-
formation leakage caused by compression in SPDY and TLS.
Similarly, the BREACH attack, reported by Prado, Harris, and
Gluck [43], demonstrated that the idea of CRIME was also
applicable to compression in HTTP, which was not considered
in the efforts to mitigate CRIME. Vanhoef and Van Goethem
[66] showed with the HEIST attack that despite all efforts
to mitigate CRIME and BREACH, an attacker-in-the-middle
could still derive the length of the plaintext of a response and
use the leakage of the compression to mount a plaintext recov-
ery attack. Around the same time, Garman, Green, Kaptchuk,
Miers, and Rushanan [26] reported an attack against Apple
iMessage that exploits certain properties of DEFLATE com-
pressed data.

Gzip [20] is a file format for lossless compressed data. In es-
sence, it wraps DEFLATE [19] compressed data and attaches
metadata fields around it. Figure 1 illustrates the high-level
file format of gzip. The first two bytes are of the fixed values
0x1f and 0x8b. Then follows a field to indicate the algorithm
used for compression: since only DEFLATE is defined in
gzip, this is always a byte of value 0x08. The other values of
the header are commonly set to zero. The trailer consists of a
CRC-32 value computed over the uncompressed data and the
length of that data.

DEFLATE is based on LZ77 [70] and Huffman coding [38].
Overall, the algorithm replaces any repeating block of data
with a reference to a previous occurrence. At the same time,
it ranks bytes and references by occurrence and assigns them
a code word accordingly. The compression effect, therefore,
comes down to data deduplication at both byte and bit level.

The DEFLATE-compressed data can consist of several
blocks. Each block starts with a header: the first three bits
determine the type of the block and indicate if the block is
the final block of the compressed data. Depending on the
type, blocks can either be uncompressed or use fixed or dy-
namic Huffman codes. In this work, we focus on blocks with
dynamic Huffman codes, for which the block then contains
information about the Huffman table used for compression.
The rest of the data in the block is the actual compressed data
in the form of Huffman code words.

How this data is encoded is well-described in RFC
1951 [19]: ‘[. . . ] encoded data blocks in the “deflate” format
consist of sequences of symbols drawn from three conceptu-
ally distinct alphabets: either literal bytes, from the alphabet
of byte values (0..255), or <length, backward distance> pairs,
where the length is drawn from (3..258) and the distance is
drawn from (1..32,768). In fact, the literal and length alpha-
bets are merged into a single alphabet (0..285), where values
0..255 represent literal bytes, the value 256 indicates end-of-
block, and values 257..285 represent length codes (possibly in
conjunction with extra bits following the symbol code) [. . . ]’

As described above, a block always ends with the code
word that represents the value 256. Since code words are
bits of variable length, a block is not necessarily byte-aligned.
Still, the gzip trailer must be byte-aligned, which is why the
block is padded to the next full byte.

Maximum Likelihood Estimation (MLE). Maximum Likeli-
hood Estimation is a method to derive the parameter that is
most likely to underlie the probability distribution of observed
data. MLE has been used, e.g. by Bricout, Murphy, Paterson,
and van der Merwe [9] and Garman, Paterson, and van der
Merwe [25].

We give a brief introduction to MLE. We are given a ran-
dom sample x = (x1,x2, . . . ,xn) where xi ∼ Xi for some ran-
dom variable Xi. We assume that the joint probability distribu-
tion of x depends on the unknown parameter θ ∈Θ. We can
make a ‘best guess’ θ̂ for θ based on the observation x:

θ̂ = argmax
θ∈Θ

L(θ|x)

where the likelihood L(θ|x) is defined as

L(θ|x) := Pr(x|θ) = Pr(x1 x2 . . .xn|θ).

Assuming that Xi,X j with 1≤ i, j≤ n and i 6= j are pairwise
independent, we can simplify this expression to

L(θ|x) = Pr(x|θ) =
n

∏
i=1

Pr(xi|θ).

Equivalently, we write:

θ̂ = argmax
θ∈Θ

logL(θ|x) = argmax
θ∈Θ

n

∑
i=1

logPr(xi|θ).



Instead of determining only one best guess, we can create
a sequence Θ̂ =

(
θ̂1, θ̂2, . . . , θ̂n

)
of candidates, ordered by

decreasing (log) likelihood.

2.1 Methodology
We analysed the Android application in version 3.1.3 and
the SDK in version 2.0.2, dated 2021-04-27 and 2021-02-09.
Since both the messaging application and the SDK are closed-
source software, it was necessary to reverse engineer them.
We retrieved the APK by installing the Bridgefy messenger
from Google Play [33] on our Android phone and fetching
the file via adb [45]. While the SDK is compiled into the mes-
saging application, it is also available separately in a public
Maven repository [15] as an AAR file.

Static Analysis. We decompiled Bridgefy to reconstruct Java
source code for better readability. The APK file was directly
decompiled using Jadx [54], but also converted into a JAR
file using enjarify [34] for further processing. The AAR file
was extracted to retrieve a JAR file. Both JAR files were
then decompiled to Java source, leveraging multiple Java
decompilers: CFR [5], Fernflower [39], Krakatau [35], and
Procyon [55]. While the output was obfuscated, Bridgefy’s
code sometimes references class and method names in debug
messages.

Dynamic Analysis. After manually inspecting the Java code,
we instrumented the Bridgefy messenger with Frida [46] and
objection [49]. This allowed us to hook into existing functions
of the app, and thereby monitor method calls and change
method behaviour. In particular, we could observe packets
as they were being encrypted and decrypted. As part of this
work, we produced several Frida scripts to extract information
and modify the behaviour of Bridgefy. The source code of
these scripts will be published in our public repository.2

Simulation. Our simulations in Section 6 were performed
on several machines. In total, these were equipped with four
Intel(R) Xeon(R) Gold 6252 CPUs, two Intel(R) Xeon(R)
Gold 6138 CPUs, two Intel(R) Xeon(R) E5-2690 v4 CPUs,
and two Intel(R) Xeon(R) E5-2667 v2 CPUs.

3 Bridgefy Architecture

In this section, we explain how the protocol underlying the
Bridgefy application and SDK works, with a focus on its
confidentiality and authenticity mechanisms.

3.1 Overview
Users that run an application using the Bridgefy SDK (such
as the Bridgefy application itself) become part of a Bluetooth
network that relays messages, i.e. they become a peer of the
mesh network.

2https://github.com/eikendev/breaking-bridgefy-again

Bridgefy supports Bluetooth Low Energy (BLE) and Clas-
sic Bluetooth, with BLE being the default mode of operation.
Under certain conditions, messages can also be transmitted
over the Internet, however, if a device is offline, it will natur-
ally only communicate over Bluetooth. In this work, we focus
exclusively on BLE-based communication.

Messages can either be sent publicly to everyone nearby or
to a specific user. Public messages are sent in the broadcast
room, while private messages are sent in a private chat. A
private chat can only be instantiated with users whose device
has previously been within Bluetooth reach. This is done by
clicking on the name of another user in the broadcast room.

For private chats, the application will indicate visually
when the other user is within Bluetooth reach. If this is the
case, then the messages to that user will not be relayed over
the mesh network, but sent directly to that user.

Users are identified by a universally unique identifier
(UUID) of 128 bit called userId. This UUID is randomly
generated on each device when the application is launched
for the first time. Users must also pick a display name when
they install the app, however, it is not unique and can be ar-
bitrarily chosen. When a new broadcast message is received,
the display name of the sender is displayed along with the
message.

3.2 Software Components
As mentioned above, the Bridgefy application makes use of
Bridgefy’s SDK. While the application is responsible for the
user interface and chat management, the SDK provides the
necessary mechanics to (i) establish trust between devices,
(ii) encrypt and decrypt packets, and to (iii) transmit pack-
ets via the Bluetooth functionality offered by the underlying
operating system.

For the SDK to work, it needs to be initialised, which hap-
pens when the application starts. This process and the general
use of the SDK is documented in a GitHub repository together
with official sample applications [16]. Additionally, a descrip-
tion of all exposed functionality is available in the official
SDK documentation [14].

To summarise, the application calls
Bridgefy.initialize() of the SDK with a registra-
tion callback and an API key. The SDK will then validate
the API key and notify the application of the result
via the callback. On success, the application next calls
Bridgefy.start() with two different callbacks:

• a message listener that is called when a new message is
received, and

• a state listener that is called when a connection with a
nearby peer is established or closed.

Finally, if the application wants to send a mes-
sage, it calls Bridgefy.sendMessage() or
Bridgefy.sendBroadcastMessage(). Depending on

https://github.com/eikendev/breaking-bridgefy-again


its use case, the application can set a profile for the SDK to
control the lifetime of messages in the network.

The SDK outsources some cryptography-related operations
to libsignal. When instantiating a SignalProtocolAddress,
Bridgefy sets the deviceId to 0 while using a peer’s userId
in the addresses name field. libsignal maintains state for all
established sessions in a SignalProtocolStore. When a
new PKB is received from a peer, Bridgefy instantiates a
SessionBuilder which is supplied with the protocol store
and the peer’s protocol address. A new session is then created
by passing the PKB to SessionBuilder.process(). When
the SDK needs to encrypt data using Signal for a particular
peer, it instantiates a SessionCipher and supplies it with the
protocol store and the peer’s protocol address. The data is
then passed to SessionCipher.encrypt().

3.3 Packet Types
Users can decide between sending broadcast messages and
private messages. However, since private messages can either
be sent directly to the other peer or over the mesh network,
there are three different settings to consider:

• A broadcast packet propagates a broadcast message from
one peer to multiple other peers over the mesh network.

• A multi-hop packet transmits a private message from one
peer to another over the mesh network.

• A one-to-one packet transmits a private message from
one peer to another directly. Note that this setting is only
applicable when the two peers are within Bluetooth reach.

On the network layer, Bridgefy associates only two dif-
ferent packet types with these settings: those that are routed
through the mesh network, and those that are sent directly.
The former packets are referenced as type ForwardMessage,
while the latter are of type BleEntityContent.

3.4 Handshake
When two devices get physically close enough to establish a
Bluetooth connection, they perform a handshake (assuming
that they have not performed a handshake previously). This
process is handled by the SDK, meaning it is not visible to
the application.

In the handshake, each party generates a PKB and sends
it to the other party. Based on the exchanged PKBs, a Signal
session is established, enabling the parties to encrypt and
authenticate packets.

Assuming Alice A and Bob B come within range of one
another for the first time, the handshake proceeds as follows:

A→ B : ResponseTypeGeneral(userIdA) (1)
B→ A : ResponseTypeGeneral(userIdB) (2)
A→ B : ResponseTypeKey(PKBA) (3)
B→ A : ResponseTypeKey(PKBB) (4)

Here, userIdA denotes the userId of peer A and PKBA de-
notes the PKB generated by A. After (1), B checks if any
Signal session has already been established for userIdA, and
aborts the handshake if this is the case. Peer A may also abort
the handshake after (2).

Note that we have made some simplifications here that are
not relevant to our analysis. For example, the packets also con-
tain CRC checksums and version information. Further, all four
packets of the handshake are wrapped in a BleHandshake
packet, which itself is wrapped in a BleEntity packet.

The handshake is not performed over the mesh network,
but only over a direct Bluetooth connection. As a result, only
peers that have previously met can later exchange messages
privately over the mesh network.

Because no further authentication is involved, the hand-
shake follows the trust on first use (TOFU) principle: in (3)
and (4), the parties implicitly trust the PKB they receive. In
contrast to messengers like Signal, users cannot verify the
keys of peers manually, as Bridgefy’s user interface offers no
way to do so.

3.5 Packet Encoding
On the lowest layer, Bridgefy encapsulates all packets into the
type BleEntity. Its et field (presumably for ‘entity type’)
indicates the type of packet it contains.

The type ForwardPacket represents multi-hop pack-
ets and broadcast packets. For efficiency, multiple ob-
jects of type ForwardPacket are bundled into a packet
of type ForwardTransaction on the network layer.
Going forward and for ease of exposure, we will as-
sume that a ForwardTransaction contains only a single
ForwardPacket, as would be the case in a low-traffic mesh
network.

The type ForwardPacket features fields necessary to route
the packet through the mesh network. Among other things,
it contains a time to live (TTL) field named hops. This field
is a single byte value that decrements whenever the packet is
forwarded by a node. The purpose of the field is to prevent
packets from circulating in the mesh network indefinitely:
once the value reaches 0, the packet is discarded.

The track field is a list that contains the CRC-32 sums of
userIds that have been involved in the delivery of a packet.
More precisely, its length is limited to the last n nodes, where
n varies depending on the profile of the connection.The field
appears unused otherwise.

Both the ForwardPacket and the ForwardTransaction
have their own sender field. The former holds the userId
of the message sender, while the latter holds the userId of
the packet sender. The message sender originally typed the
message into the chat window, whereas the packet sender was
the most recent peer to relay the message. The two fields are
equal exactly at the very first hop of the message.

While the overall structure of broadcast and multi-hop pack-
ets is similar, there are important differences:



1

1..*

ForwardPacket

+ id: UUID
+ payload: Map<String, Object>
+ sender: UUID
+ receiver: UUID
+ creation: long
+ expiration: long
+ receiver_type: int
+ hops: int
+ profile: int
+ track: List<long>

BleEntity<T>

+ id: UUID
+ et: int
+ ct: T

«bind»

ForwardTransaction

+ dump: bool
+ sender: UUID

BleEntityContent

+ id: UUID
+ payload: Map<String, Object>

«bind»

Figure 2: A ForwardPacket is always encapsulated in
a ForwardTransaction, which itself is encapsulated in a
BleEntity. A BleEntityContent is also encapsulated in a
BleEntity.

• The receiver_type field is used to differentiate broadcast
packets from multi-hop packets: the value 1 indicates a
broadcast packet, and the value 0 a multi-hop packet.

• Since broadcast packets do not have a designated receiver,
they do not contain a populated receiver field.

• In multi-hop packets, the payload entry nm (presumably
for ‘name’) refers to the name of the receiver, whereas in
broadcast packets, it refers to that of the sender.

• While a ForwardPacket containing a broadcast packet is
serialised and encrypted as a whole, it is handled differently
for multi-hop packets: the payload field is removed from
the BleEntity and processed separately. The remaining
data in the BleEntity is considered metadata and encryp-
ted in another way than the payload.

Because one-to-one packets are not carried over the
mesh network, they do not carry routing information. For
this reason, they are encoded in the more concise packet
type BleEntityContent. Figure 2 illustrates the relations
between all discussed types in a UML diagram.

The message typed by a user is referred to as ‘payload
content’. In a ForwardPacket, the payload content is stored
as a string under the key ct in the payload. For one-
to-one packets, it is encoded in the payload map of the
BleEntityContent respectively.

3.6 Packet Encryption
Before a BleEntity is sent to another peer, it is (i) serial-
ised using MessagePack, (ii) compressed using gzip, and then

Data Category Metadata Payload

BleHandshake AES-ECB AES-ECB
BleEntityContent AES-ECB libsignal
ForwardTransaction AES-ECB libsignal

Table 1: Encryption of packets in Bridgefy by data category
and packet type.

(iii) encrypted. The encryption step can involve Signal encryp-
tion in combination with AES in ECB mode with PKCS#7
padding, or AES-ECB with PKCS#7 padding only. Table 1
summarises which encryption method is used for the different
packet types.

For AES-ECB, a symmetric key is shared between all peers
in the network. In the case of the Bridgefy messenger, an
adversary can easily obtain this symmetric key because the
application is public. More generally, depending on the nature
of the threats considered – inside and outside – the shared
symmetric key may be considered known or unknown to the
adversary.

Signal encryption is only used for the payload field of
multi-hop and one-to-one packets. Broadcast packets and the
metadata of any other packets are encrypted with AES-ECB.
In Section 5 we will ignore this layer of encryption as the
shared key of the Bridgefy messenger must be assumed as
known to the adversary: it can be recovered using dynamic
instrumentation. We then treat it in Section 6 and Appendix A.

Remark 1 Previous versions of Bridgefy implemented a cus-
tom scheme based on RSA in place of the Signal protocol.
With Bridgefy’s adoption of the Signal protocol in place of
RSA, the padding oracle attack reported in [1] is no longer
applicable.

3.7 Devices and Sessions
In the Bridgefy SDK, the DeviceManager is responsible for
maintaining a list of nearby Bluetooth devices. Each device
is associated with a session, which itself is managed by a
SessionManager. Since the co-existence of devices and ses-
sions appears arbitrary, we will in the following refer to ses-
sions only.

During the handshake, a userId is received from the other
peer and saved in the corresponding session. When the SDK is
instructed to send a message to a userId, it looks for a session
associated with that userId. The message is then queued in
the TransactionManager together with the session. Once
Android requests more Bluetooth data to send, the SDK pops
the queued message, encrypts it for the userId saved in the
session, and dispatches it.

When a Bluetooth packet is received, the SDK looks up
the correct session based on the remote Bluetooth address.
After assembling and decrypting the packet, it is passed to a
generic message handler.



4 Re-evaluation of Previous Attacks

As outlined in Section 1, several vulnerabilities described
in [1] remain unfixed. We discuss these here in more detail.

4.1 Active Attacker-in-the-middle (MITM)
Due to Bridgefy’s architecture, any PKB received from a
new peer is inherently trusted, following the TOFU principle.
That implies that Bridgefy is vulnerable to a MITM attack
similar to the one reported in [1]. However, with the adoption
of libsignal, the conditions necessary to perform the attack
have changed slightly: Mallory now needs to perform the
handshake with Bob before Alice does, whereas in earlier
versions of Bridgefy this was not required.

The updated attack proceeds as follows: Assume that Alice
and Bob have not met before. Mallory performs a handshake
with each of Alice and Bob and impersonates them to one
another. Any message then sent from one party is then relayed
by Mallory to the other party.

If Mallory tries to perform the attack after Bob has already
run a handshake with Alice, the following would happen:
Mallory would try to impersonate Alice by performing a full
handshake with Bob, using Alice’s userId but Mallory’s own
PKB. When the SDK tries to store Mallory’s PKB under
Alice’s userId, libsignal would throw an exception since Alice
has already established a Signal session with Bob and so a
PKB is already present under Alice’s userId.

Note that Alice and Bob will never be able to confirm if
they are directly exchanging messages or if they are instead
subject to a MITM attack. This is because, in contrast to
popular messaging applications like Signal, Bridgefy does
not provide any mechanism to allow users to verify the keys
of other peers manually.

4.2 Impersonation in the Broadcast Chat
An adversary can forge arbitrary broadcast messages. The
adversary can send messages under the name of any userId
and freely choose a payload content and display name. The
reason for this is the lack of authentication for broadcast
messages.

We implemented a proof of concept for this attack to verify
it. We found, however, that the app permanently saves the
display name of other peers based on their userId. Any peer
that once received a message from Alice will remember her
display name and permanently associate it with her userId.
When Mallory sends a message using Alice’s userId but with
a different display name, other peers will still show Alice’s
real display name for this message.

4.3 Denial of Service (DoS)
We confirmed that Bridgefy remains vulnerable to a ZIP bomb
attack as reported in [1]. This attack exploits that all packets
are decompressed using gzip after decryption. An adversary
can inject a specifically crafted packet that decompresses

Assemble Decompress
and Decrypt

Relay to
Network

Process

Figure 3: Since metadata is encrypted and compressed, a peer
needs to decompress a packet before it can tell the type of
message it received.

to more bytes than are available in the memory of a target.
The target’s app will first freeze and become unresponsive,
and eventually crash. That allows Mallory to prevent specific
devices from participating in the mesh network.

With its overhaul, Bridgefy now encrypts all metadata with
the shared key. That makes it necessary for a peer to decom-
press a packet before being able to determine what type of
message was received, as illustrated in Figure 3. Given the
new flow to process incoming packets, the attack reported
in [1] – where only a single message can shut down the entire
network – no longer works, as it requires peers to forward
mesh packets before decompression.

However, this vulnerability can be used to interfere with
the correct functioning of the mesh network by shutting down
several parts of the network. Specifically, all the peers that
are one hop from the adversarially controlled peers can be
taken offline. Given that resilience is a key requirement for
Bridgefy’s adoption in higher-risk environments, this attack
invalidates one of Bridgefy’s most central appeals.

4.4 Building a Social Graph
As reported in [1], Bridgefy previously transmitted the
sender and receiver fields of multi-hop packets in plaintext.
These are now encrypted under the shared network key. Thus,
an adversary in the mesh network spanned by the Bridgefy
messenger remains able to learn who is privately communic-
ating with whom.

Using the track field of a ForwardPacket, an adversary
can determine what nodes helped to deliver a packet. That
permits building a model of the psychical topology of the
mesh network. An adversary could also use this to trace back
the location of a peer that repeatedly sends messages or relays
such of other peers.

4.5 Historical Proximity Tracing
Bridgefy announced that they now protect against the histor-
ical proximity tracing method reported in [1]. However, our
tests show that the attack is still possible: a full handshake is
performed when two devices have not been near each other
before, while only a partial handshake is performed otherwise.

An adversary can leverage this, e.g. to learn if a peer was
physically present at a protest. Given that the timing and the
approximate size of the handshake packets are known to the



adversary, the attack is even possible without knowledge of
the shared symmetric key.

5 Breaking Confidentiality of One-to-One
Messages

We identified a TOCTOU vulnerability in the SDK that can
be leveraged to read private messages between two users of
the Bridgefy application.

For simplicity, we assume that the communicating parties
are not directly connected via Bluetooth. While this assump-
tion is not strictly necessary, it makes the exploitation of this
vulnerability easier.

Accompanying the textual description of the attack that
follows, the packet flow used in the attack is illustrated in
Figure 4. The numbering on the very left of the illustration
matches the numbering in the individual steps in the following
paragraphs.

Assume a setting where Alice and Bob’s devices have
already performed a handshake and have exchanged messages
(e.g. M0 in Figure 4). Bob’s device then goes out of range of
Alice’s so that the Bluetooth connection is terminated (step 1
in Figure 4). If Alice’s device was to now send a message
to Bob’s device, it would send it into the mesh network, as
Bob’s device is no longer a directly connected peer.

Next, Mallory performs a full handshake with Alice’s
device so that Alice’s device registers Mallory’s PKB (step 2
in Figure 4). Until this point, Mallory behaves normally as
any honest peer would.

Mallory again sends the first packet of the handshake, this
time using Bob’s userId in place of Mallory’s own (step 3
in Figure 4). No mechanism in Bridgefy prevents Mallory’s
message from being processed. Alice’s device will now asso-
ciate the established session with Bob. In particular, Alice’s
device will queue any subsequent packets intended for Bob
in this session.

Because Mallory initiated a new handshake using Bob’s
userId, Alice’s device will indicate to Alice that Bob’s device
is in range. Suppose then Alice types a message intended for
Bob (M1 in Figure 4). The SDK looks for any active session
where the userId equals that of Bob’s device as per our de-
scription in Section 3.7 (step 4 in Figure 4). Since Mallory
provided the userId of Bob’s device in its second handshake,
Alice’s session with Mallory yields a match. Hence, the mes-
sage is queued in the TransactionManager for the session
with Mallory. If the packet was dispatched at this point, the
packet would be encrypted for Bob (this is because libsignal
also uses the userId of the session to decide which key to
use in the encryption). So Mallory would not be able to read
it. However, instead of being dispatched, the packet is only
queued.

Now, Mallory sends the first packet of the handshake for
a third time, using Mallory’s own userId (step 5 in Figure 4).

Mallory

BobAlice

disconnect
decryption successful

decryption successful

1

2

3

4

5

Figure 4: The packet flow of our TOCTOU attack on Bridgefy.
Alice sends a message to Bob twice: the first message M0 is
sent to Bob only, but Mallory can decrypt the second message
M1, even though it was intended for Bob.

The userId of the session from the perspective of Alice’s
device now equals that of Mallory again. When the SDK on
Alice’s phone is asked for more data to transmit via Bluetooth,
the packet is encrypted by Signal for Mallory and dispatched
(again, libsignal uses the session’s userId to decide which key
to use in the encryption).

The above attack exploits a race condition: because Mallory
sends the userId of Bob’s device in its second handshake,
Alice thinks she has a session with Bob. If she types a message
for Bob, this message is then queued in a session with Mallory.
But Mallory switches the userId back to its own userId in the
third handshake so that when the message is dequeued and the
libsignal encryption is performed, it is done using Mallory’s
public key.

Remark 2 If no proper Signal session was established in
the beginning, switching back to Mallory’s real userId would
require a full 2-round-trip handshake. Given that this attack
exploits a race condition, it is hence important for Mallory
to initiate an honest handshake before proceeding with the
attack.

We implemented a proof of concept for this attack to con-
firm that it works. We will publish the code in our public
repository.3 We sent 100 messages from Alice’s phone, 56 of
which were received and decrypted by Mallory in our tests.
The fact that not all messages were received is explained

3https://github.com/eikendev/breaking-bridgefy-again

https://github.com/eikendev/breaking-bridgefy-again


by the attack exploiting a race condition. What plays into
the hands of Mallory is that Bridgefy reschedules a private
message if it cannot be delivered to the receiver. If the SDK
looks up a session matching the receiver’s userId while the
session is associated with Mallory’s userId, it will be resched-
uled. Still, packets can get ‘lost’ for Mallory when the packet
is encrypted right after Mallory switches the userId back to
Bob’s.

Note that when Mallory intercepts a message, Bob will
not receive it: Alice encrypts the packet for Mallory only,
while Mallory cannot re-encrypt it for Bob in Alice’s name.
If Mallory was to encrypt and send a message to Bob while
using Alice’s userId during the handshake, Bob would fail to
decrypt the packet. Instead, if Mallory used their real userId,
Bob would process the packet before Mallory gets the chance
to change the userId of the session again. In other words, the
attack breaks confidentiality but not authentication.

6 Attacks on Broadcast Messages

Attacks on the confidentiality of broadcast messages are not
an issue for the Bridgefy messenger, since the encryption key
is assumed to be public knowledge anyway. However, they
are relevant for other applications that use the Bridgefy SDK,
where a per-application encryption key is used.

6.1 Distinguishing Attack
In Appendix A, we give a simple and efficient distinguisher
that formally breaks the IND-CPA security of Bridgefy’s
broadcast message feature. That such an attack is possible
seems intuitive given that the feature relies on AES-ECB,
a deterministic encryption scheme. However, this intuition
is not correct because, if we let the adversary only choose
the payload content, then the scheme used is no longer de-
terministic (since broadcast packets also contain unpredict-
able fields such as the userIds, the sender’s display name,
and timestamps). Moreover these fields interact with the per-
packet compression to produce variable plaintext inputs to
AES-ECB, even if the payload contents are known. For this
reason, our distinguisher breaking IND-CPA security does
not rely on having controlled input blocks to AES-ECB but
instead exploits Bridgefy’s compression of the full plaintext
before AES-ECB is applied. It is obtained by selecting in the
IND-CPA security game pairs of equal-length payload con-
tents: one payload content that compresses well and one that
does not. AES-ECB aligns data on 16-byte block boundaries
through padding, but we choose the payload contents so that
the difference in compressed packet lengths is (sometimes)
larger than one block in size.

6.2 Plaintext Recovery Attack
This compression-based side channel points the way to our
plaintext recovery attack, which is the focus of the remainder

of this section. We assume from here on that the broad-
cast message payload contents comes from a known set
P = {p1, p2, . . . , pn} of possible payload contents. Addition-
ally, we assume a network where a large number of devices
participate, the senders of the broadcast messages have user-
names of equal length, all broadcast messages contain the
same payload content π (where π ∈P), and the adversary
can capture M different packets containing payload content
π at each of the first H ≤ 50 hops. The attack we describe
allows an adversary A to recover π given the set of M ·H
captured packets, without knowing the shared key.

In our attacks, we will work with different choices of P .
We define

Pb = {pi|32≤ i≤ 126} and P`,n
w = {p1, p2, . . . , pn} ,

where pi ∈Pb is a string that only consists of the single byte
i – Pb contains all printable ASCII characters that a user can
type in the chat window of Bridgefy – and where pi ∈P`,n

w
is the i-the most commonly used password of length ` in
the rockyou password list [28] – a list of 32.6 million real-
world passwords commonly used for password cracking. The
payload contents in P8,256

w , for instance, account for 2.2 %
of all passwords in the whole rockyou data set. We do not
anticipate Bridgefy users to be likely to broadcast passwords,
but we use P8,256

w as a proxy for a set of likely broadcast
messages. It could be replaced by a set of common English
words, for example.

6.2.1 Core Idea. Our attack first simulates the broadcast
of a large number of packets for each p ∈P , gathering stat-
istics on the lengths of packets. The idea is that different
values p ∈P will produce different length distributions due
to varying amounts of compression (and with the amount of
compression possibly depending on the hop count and other
header fields). This simulation step is done offline. Then, in
the second step, we take the set of M ·H captured packets,
specifically, their lengths and use MLE to compute the like-
lihood of each candidate p ∈P , given the captured set of
lengths. This allows us to rank all the candidates p ∈P in
order of likelihood.

6.2.2 Simulation Phase. The adversary runs its simulation
to collect the lengths of a total of N · |P| ·H packets. It builds
|P| sets Xp of vectors, one set for each p ∈P . Each set Xp
contains N vectors, and each vector has length H. A given vec-
tor x∈Xp represents the sequence of packet lengths observed
for a packet transporting payload content p being transmitted
across H hops of the network. The lengths are all multiples
of the AES block size of 16 bytes.

From this data, the adversary can derive an empirical value
for θ`|h,p, this being the probability of observing a certain
length ` given it is observed at hop h for a packet with payload
content p. Note that at hop h the hops field has the value
50−h+1.



Since this simulation phase is done offline, and the data
reduction required to compute all the values θ`|h,p can be done
during the simulation itself, we can use large values of N and
hence obtain accurate approximations to the corresponding
distributions.

6.2.3 Attack Phase. The adversary observes M broadcast
messages at each of the first H ≤ 50 hops, yielding M ·H
packets. We assume all contain the same payload content
π ∈P , where π is the target of the attack.

From the lengths `i,h of these M ·H packets, the adversary
computes counts c`,h, where c`,h is the number of observed
packets having length ` at hop h. Abstractly, we let l denote
the collection of observed lengths and c the collection of
observed counts.

Now we deploy MLE. For each choice of p ∈P , the ad-
versary computes L(p|l), the likelihood that p is the correct
payload content given the collection of observed lengths, and
finds:

π̂ = argmax
p∈P

L(p|l).

If π̂ = π, then the adversary is able to successfully recover
the payload content of the broadcast message. The adversary
can also output a list of the top candidates by likelihood. It
remains to describe how to compute L(p|l). Recall that

L(p|l) := Pr(l|p) =
M

∏
i=1

Pr(`i,1 `i,2 . . . `i,H |p).

We make the simplifying assumption that, in a given broad-
cast, the observed packet lengths are independent across the
hops and depend only on the payload content p.4 This enables
us to write:

L(p|l) =
M

∏
i=1

Pr(`i,1|p) ·Pr(`i,2|p) · . . . ·Pr(`i,H |p)

=
M

∏
i=1

H

∏
h=1

Pr(`i,h|p) = ∏
`

H

∏
h=1

θ
c`,h
`|h,p

where, in the last step, we work with non-zero counts c`,h
instead of individual packet lengths `i,h. In practice, we work
with the logarithm of the above expression, and compute

π̂ = argmax
p∈P

logL(p|l) = argmax
p∈P

∑
`

H

∑
h=1

c`,h log(θ`|h,p).

Remark 3 If a certain packet length ` is never observed for
a pair (p,h) during the simulation phase, but that length
appears in the attack sample, then we have θ`|h,p = 0 and
then log(θ`|h,p) will be undefined. In this case, we will use

4Instead of assuming that the observed packet lengths are independent
across the hops, we could make a first order Markov assumption concerning
the lengths. Because in our experimental results this only gave a negligible
improvement, we here continue to assume independent lengths only.

smoothing to set θ`|h,p to a reasonable value. From the many
smoothing methods available, we use Laplace smoothing [42,
pg. 260] in our experiments. This is comparatively unsoph-
isticated but easy to implement. We also experimented with
Good-Turing smoothing, but it did not significantly improve
our results.

6.3 Attacking Single-Byte Payloads

We first discuss the instance of the attack where P = Pb,
meaning that π is a single byte. A realistic attack scenario for
this would be when a protest leader surveys participants with
the options to respond ‘y’ for ‘yes’ and ‘n’ for ‘no’. If a signi-
ficant majority answers with either option, an adversary could
determine the answer of that majority with high probability.5

We now provide a possible mechanism to try to explain
why our MLE attack based on compressed packet lengths
can succeed in this case. The hops field in a ForwardPacket
indicates the time to live (TTL) of the packet. For each hop
in the network, this field decreases by 1, and the packet is
eventually dropped before the value reaches 0. Because the
fixed starting value 50 is used for all broadcast packets, the
exact value of the field at each hop is known. When the hops
field matches the byte value of π we can hope that a small
amount of extra compression will be obtained, and the encryp-
ted packet may end up being one block shorter than average.

Figure 5 shows the MessagePack-encoded hops field of a
packet at the first hop, and its payload content. Because the
fields do not share any surrounding bytes, the LZ77 compres-
sion alone cannot cause a change in the compressed packet
length, but the Huffman coding can: in packets where the
payload content π matches the hops field, we observed exper-
imentally that the respective Huffman symbol is on average
represented using 1 bit less than when they do not match. The
root cause for this is the dynamic Huffman table in gzip, where
more frequent symbols are assigned shorter code words.

The DEFLATE data is padded to a full byte, meaning that,
in roughly 1 in 8 cases the single bit difference causes the
gzip output to be one byte shorter when π matches the hops
field than when it does not. Because the AES block size is 16
bytes, in a further fraction of 1 in 16 cases, this byte difference
propagates through the AES-ECB layer and shows up as a
packet that is one block shorter when π matches the hops
field than when it does not.

Our MLE attack, which separates the packets by hop count,
and which empirically estimates the distributions of packet
lengths as a function of hop count and payload content, auto-
matically makes use of any small signal arising through a com-
pression leak of the type described above. In reality, based on
experiments with single-byte payloads, the actual behaviour
of the compression is significantly more complex. Neverthe-

5Our attack assumption was that all broadcast payload contents π are
identical. This would not hold in the given scenario, but the minority answers
can be regarded as noise in the likelihood computations.



A4 68 6F 70 73 32 A7 70 72 6F 66 69 6C 65

marker

marker

hops value "profile"

"hops"

A2 63 74 A1 32 A2 6D 74

marker

payload

marker marker

"ct" "mt"

...

Figure 5: The hops field and the payload content in a MessagePack-serialised packet. All values are represented in hexadecimal,
meaning this packet’s hops value is 50.

less, the MLE attack still does improve plaintext prediction
over random guessing, as we show in Section 6.5 below.

6.4 Equal-Length Payloads
We now discuss the case where P = P`,n

w . In our experi-
ments, we take `= 8 and n = 256, implying that π is 8 bytes
in length, so our attack will be trying to recover an 8-byte
message from a set of 256 possibilities. We also look at
P = PX ,256

w , where we consider payload contents of mixed
lengths. In the real world, when peers repeatedly share a mes-
sage π with each other through the broadcast functionality, an
adversary interested in this message could leverage the attack
to recover π.

As two examples, P8,256
w contains the strings ‘11111111’

and ‘princess’. For the former, the effects of compression
are easily visible in packet lengths because the string itself
contains duplicate data. For the latter, the compression yields
a signal because parts of the string can also appear in the
metadata. As we will see in our experimental results, the
signal is strong enough to give the MLE attack an advantage
over random guessing.

6.5 Results
We implemented a proof of concept simulation for the attack
to confirm that the compression leak is sensitive enough to
provide statistically significant results. We perform the attack
with N = 220, and with different H and M, using Laplace
smoothing to account for lengths not encountered during the
simulation.

We ran the attack for each of Pb, P8,256
w , and PX ,256

w .
For each such set P , we ran the attack using each π ∈P
as a target, performing n = 26 attacks per target to remove
noise. In each such run, we created a ranking of all possible
candidates from P ordered by their log likelihoods. Before
we present our results, we define the rank of an attack run.

Definition 1 Let π ∈P be the payload content used to gen-
erate a sample in an attack run. We call the rank of that attack
run the index of π within the ordered ranking of all possible
candidates from P .

So, for example, if the rank is 1, then the attack output the
correct π as having the highest likelihood, if the rank is 2, then

the attack output the correct π as having the second highest
likelihood, etc.

Let rπ,i be the rank of the i-th run for payload content π.
We denote

r̄π =
1
n

n

∑
i=1

rπ,i

as the average rank over all runs for the payload content π,
and

r̄P =
1
|P| ∑

π∈P

r̄π

as the average rank over all runs for all payload contents in
P . To measure the overall accuracy of our attack, we look at
the relative frequency of ranks among all measured payload
contents. In particular, we are interested in the percentage of
attack runs where the rank is less or equal to R, for increasing
values of R. When randomly guessing π, we expect this rela-
tion to be linear – for example, half of the attacks would have
a rank below the average value and the other half above. The
plots in Figure 6 then highlight what difference our attack
makes in comparison to random guessing.

Finally, we evaluate how the parameters H and M affect
the accuracy of the attack. For this, we run simulations and
attacks with various values for these parameters, while fixing
N = 220 (in the simulation phase). Figure 7 shows the average
rank across all payload contents for several combinations of
parameters.

Our results demonstrate that the attack outperforms random
guessing by a significant margin. As a point of comparison,
Pb is of size 95, so random guessing would result in an
average rank of 47.5, whereas the attack achieves average
ranks well below that. We note that increasing H (the number
of hops over which packets are observed) leads to a better
performance of the attack, as does increasing M (the number
of packets available at each hop).

Remark 4 Assuming an a priori non-uniform distribution on
P is known, we can replace MLE by Maximum A Posteriori
(MAP) estimation. This uses the a priori distribution to weight
the candidates when computing likelihoods, resulting in a
more powerful attack.



10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Threshold R

Fr
eq

ue
nc

y
of

ra
nk

s
<

R

Random
π ∈Pb

32 64 96 128 160 192 224 256
0

0.2

0.4

0.6

0.8

1

32 64 96 128 160 192 224 256
0

0.2

0.4

0.6

0.8

1

Threshold R

Fr
eq

ue
nc

y
of

ra
nk

s
<

R

Random

π ∈P8,256
w

π ∈PX ,256
w

Figure 6: Cumulative frequency histogram of ranks, comparing our attack against random guessing for different P . The plots
show the portion of ranks less than R for H = 2, N = 220 and M = 28.

6 8 10 12 14 16 18
1

10

20

30

6 8 10 12 14 16 18
1

10

20

30

log2 M

r̄

H = 21

H = 22

H = 24

(a) π ∈Pb

6 8 10 12 14 16 18
1

20

40

60

80

6 8 10 12 14 16 18
1

20

40

60

80

log2 M

H = 21

H = 22

H = 24

(b) π ∈P8,256
w

6 8 10 12 14 16 18
1

20

40

60

6 8 10 12 14 16 18
1

20

40

60

log2 M

H = 21

H = 22

H = 24

(c) π ∈PX ,256
w

Figure 7: Average rank r̄ for different (M,H).

7 Discussion

We gave a practical attack which enables an attacker to read
private messages sent in the Bridgefy messenger because of an
improper integration of the Signal protocol. Indeed, the most
restricting requirement is physical presence: an adversary
must be in sufficiently close proximity to the target to establish
a direct Bluetooth connection. This does not pose an obstacle
in a protest, where an adversary can disguise themselves as a
protester. This highlights the dangers of ‘bolting on’ security
to an otherwise unchanged design and suggests the need to
carefully redesign Bridgefy to integrate tightly and fully its
security mechanisms, here provided by the Signal protocol.

We also gave an attack to recover plaintexts of broadcast
messages without knowing the shared encryption key. This
attack is only relevant to the Bridgefy SDK but not to the
Bridgefy application and its users, where this shared key can
be assumed to be known to the adversary, as mentioned earlier.
The attack is enabled by the decision to perform compression
before encryption. This exposes information about the under-
lying data based on the output length. Our attack assumes a
small space of possible plaintexts. This is reasonable in many
contexts. For example, in a protest setting, a small group of
protest leaders [4] may issue typical messages to the group.

We illustrated the attack by recovering plaintext from a small
set of possible passwords. Preventing compression oracle
attacks is a known problem in the literature. The natural solu-
tion is to remove compression and to introduce an appropriate
randomised padding mechanism to prevent length-based at-
tacks. However, this needs to be done carefully so as to avoid
traffic analysis attacks, cf. [21], and such an approach would
reduce Bluetooth performance while enhancing security.

The privacy issues of Bridgefy remain largely unresolved.
While sender and receiver identities are no longer transmitted
in plaintext, any peer in the mesh can decrypt the relevant
fields. In the case of the Bridgefy messenger, the userIds of
sender and receiver hence continue to be publicly visible. An
adversary can leverage this to build communication graphs
and thereby identify protest leaders. Moreover, an adversary
could use the track field of a ForwardPacket to approxim-
ate the physical location of a peer in the network. It remains
an open research question how (flooding based) mesh net-
working can efficiently provide sender and receiver privacy
even against passive adversaries.

Bridgefy’s decision to adopt the Signal protocol to replace
its previous home-grown RSA-based solution – heeding the
often-repeated ‘don’t roll your own crypto’ advice – is to



be applauded. Yet, our ability to still mount practical attacks
against Bridgefy’s flagship application highlights that this
common mantra is insufficient. What else do we expect inex-
perienced developers to do other than call out to a third-party
cryptographic library when faced with the task of securing
their application? That is, while progress has been made in
simplifying cryptographic APIs, the task of cryptographically
securing an application is still non-trivial. Exploring whether
this is inherent, i.e. whether a certain defensive development
mindset and training will remain required, or not, is a fas-
cinating and pressing question for usable, developer-friendly
cryptography and security.

Overall, we note that Bridgefy’s track record on security
contrasts with the fact that it continues to be advertised to
higher-risk users. Ours is the second work within a year to
present significant and practically exploitable security vul-
nerabilities in Bridgefy’s flagship application. Moreover, the
long response time and lack of transparency of the develop-
ment team when responding to reports of security vulnerab-
ilities suggest a team inexperienced with handling security-
critical issues. Yet, this track record does not seem to impact
Bridgefy’s popularity among those who offer advice on how
to stay connected in face of government-mandated Internet
shutdowns, as discussed in the introduction. This highlights
that there is, seemingly, no good alternative to Bridgefy,6

i.e. that the problem of secure offline messaging remains
unsolved in practice.

Acknowledgements

The work of Albrecht was supported by the EPSRC grants
EP/S020330/1, EP/P009417/1, EP/L018543/1. The work of
Paterson was supported in part by a gift from VMware.

References

[1] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková. Mesh messaging in large-scale
protests: Breaking Bridgefy. In Kenneth G. Paterson,
editor, Topics in Cryptology – CT-RSA 2021, volume
12704 of Lecture Notes in Computer Science, pages 375–
398. Springer, Heidelberg, May 2021. doi: 10.1007/97
8-3-030-75539-3_16.

[2] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková. Collective information security
in large-scale urban protests: the case of Hong Kong. In
30th USENIX Security Symposium (USENIX Security
’21). USENIX Association, 2021.

[3] Connectivity Standards Alliance. https://zigbeeal
liance.org/solution/zigbee/, no date.

6See [1] for a survey on mesh messaging.

[4] Evronia Azer, G Harindranath, and Yingqin Zheng. Re-
visiting leadership in information and communication
technology (ICT)-enabled activism: a study of Egypt’s
grassroots human rights groups. New Media & Society,
21(5):1141–1169, 2019.

[5] Lee Benfield. https://www.benf.org/other/cfr/,
no date.

[6] Matt Bishop and Mike Dilger. Checking for race condi-
tions in file accesses. Computing Systems, 9(2):131–152,
Mar. 1996. ISSN 0895-6340.

[7] Dan Boneh and Victor Shoup. A Graduate Course in
Applied Cryptography. 2020. URL https://toc.cr
yptobook.us/.

[8] Tim Bray. The JavaScript Object Notation (JSON) Data
Interchange Format. RFC 8259, December 2017. URL
https://rfc-editor.org/rfc/rfc8259.txt.

[9] Rémi Bricout, Sean Murphy, Kenneth G. Paterson, and
Thyla van der Merwe. Analysing and exploiting the
mantin biases in RC4. Des. Codes Cryptogr., 86(4):
743–770, 2018. doi: 10.1007/s10623-017-0355-3. URL
https://doi.org/10.1007/s10623-017-0355-3.

[10] Bridgefy. Press release – major security updates at
bridgefy! https://bridgefy.me/press-release-
major-security-updates-at-bridgefy/, October
2020.

[11] Bridgefy. https://twitter.com/bridgefy/statu
s/1356603238674538496, February 2021. https:
//web.archive.org/web/20210514094051/https:
//twitter.com/bridgefy/status/135660323867
4538496.

[12] Bridgefy. Bridgefy SDK (legacy). https://bridgefy
.me/sdk-legacy/, 2021. https://web.archive.or
g/web/20220204151515/https://bridgefy.me/sd
k-legacy/.

[13] Bridgefy. https://twitter.com/bridgefy/statu
s/1359200080700600322, February 2021. https:
//web.archive.org/web/20210209175856/https:
//twitter.com/bridgefy/status/135920008070
0600322.

[14] Bridgefy. https://www.bridgefy.me/docs/javad
oc/, no date.

[15] Bridgefy. http://104.196.228.98:8081/artifac
tory/libs-release-local/, no date.

[16] Bridgefy. https://github.com/bridgefy/bridge
fy-android-sdk-sample, no date.

https://zigbeealliance.org/solution/zigbee/
https://zigbeealliance.org/solution/zigbee/
https://www.benf.org/other/cfr/
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://rfc-editor.org/rfc/rfc8259.txt
https://doi.org/10.1007/s10623-017-0355-3
https://bridgefy.me/press-release-major-security-updates-at-bridgefy/
https://bridgefy.me/press-release-major-security-updates-at-bridgefy/
https://twitter.com/bridgefy/status/1356603238674538496
https://twitter.com/bridgefy/status/1356603238674538496
https://web.archive.org/web/20210514094051/https://twitter.com/bridgefy/status/1356603238674538496
https://web.archive.org/web/20210514094051/https://twitter.com/bridgefy/status/1356603238674538496
https://web.archive.org/web/20210514094051/https://twitter.com/bridgefy/status/1356603238674538496
https://web.archive.org/web/20210514094051/https://twitter.com/bridgefy/status/1356603238674538496
https://bridgefy.me/sdk-legacy/
https://bridgefy.me/sdk-legacy/
https://web.archive.org/web/20220204151515/https://bridgefy.me/sdk-legacy/
https://web.archive.org/web/20220204151515/https://bridgefy.me/sdk-legacy/
https://web.archive.org/web/20220204151515/https://bridgefy.me/sdk-legacy/
https://twitter.com/bridgefy/status/1359200080700600322
https://twitter.com/bridgefy/status/1359200080700600322
https://web.archive.org/web/20210209175856/https://twitter.com/bridgefy/status/1359200080700600322
https://web.archive.org/web/20210209175856/https://twitter.com/bridgefy/status/1359200080700600322
https://web.archive.org/web/20210209175856/https://twitter.com/bridgefy/status/1359200080700600322
https://web.archive.org/web/20210209175856/https://twitter.com/bridgefy/status/1359200080700600322
https://www.bridgefy.me/docs/javadoc/
https://www.bridgefy.me/docs/javadoc/
http://104.196.228.98:8081/artifactory/libs-release-local/
http://104.196.228.98:8081/artifactory/libs-release-local/
https://github.com/bridgefy/bridgefy-android-sdk-sample
https://github.com/bridgefy/bridgefy-android-sdk-sample


[17] Antonio Cilfone, Luca Davoli, Laura Belli, and Gi-
anluigi Ferrari. Wireless mesh networking: An iot-
oriented perspective survey on relevant technologies.
Future Internet, 11(4), 2019. ISSN 1999-5903. doi:
10.3390/fi11040099. URL https://www.mdpi.com/1
999-5903/11/4/99.

[18] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the signal messaging protocol. J. Cryptol.,
33(4):1914–1983, 2020. doi: 10.1007/s00145-020-093
60-1. URL https://doi.org/10.1007/s00145-0
20-09360-1.

[19] L. Peter Deutsch. DEFLATE Compressed Data Format
Specification version 1.3. RFC 1951, May 1996. URL
https://rfc-editor.org/rfc/rfc1951.txt.

[20] L. Peter Deutsch. GZIP file format specification version
4.3. RFC 1952, May 1996. URL https://rfc-edit
or.org/rfc/rfc1952.txt.

[21] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, i still see you: Why
efficient traffic analysis countermeasures fail. In 2012
IEEE Symposium on Security and Privacy, pages 332–
346. IEEE Computer Society Press, May 2012. doi:
10.1109/SP.2012.28.

[22] Ingy döt Net. https://yaml.org/, no date.

[23] Ksenia Ermoshina, Harry Halpin, and Francesca Mu-
siani. Can johnny build a protocol? co-ordinating de-
veloper and user intentions for privacy-enhanced secure
messaging protocols. In European Workshop on Usable
Security, 2017.

[24] Sadayuki Furuhashi. https://msgpack.org/, no
date.

[25] Christina Garman, Kenneth G. Paterson, and Thyla van
der Merwe. Attacks only get better: Password recov-
ery attacks against RC4 in TLS. In Jaeyeon Jung and
Thorsten Holz, editors, USENIX Security 2015: 24th
USENIX Security Symposium, pages 113–128. USENIX
Association, August 2015.

[26] Christina Garman, Matthew Green, Gabriel Kaptchuk,
Ian Miers, and Michael Rushanan. Dancing on the lip of
the volcano: Chosen ciphertext attacks on apple iMes-
sage. In Thorsten Holz and Stefan Savage, editors,
USENIX Security 2016: 25th USENIX Security Sym-
posium, pages 655–672. USENIX Association, August
2016.

[27] GitHub – Bridgefy. https://github.com/bridgef
y/bridgefy-android-sdk-sample/blob/56ad2ac
c7c8893cb2ba53f0aa5839b867ebea446/CHANGELO
G.md, no date.

[28] GitHub – danielmiessler. https://github.com/dan
ielmiessler/SecLists/blob/master/Passwords
/Leaked-Databases/rockyou-withcount.txt.ta
r.gz, no date.

[29] GitHub – msgpack. https://github.com/msgpack
/msgpack-java, no date.

[30] GitHub – msgpack. https://github.com/msgpack
/msgpack/blob/master/spec.md, no date.

[31] GitHub – vmihailenco. https://github.com/vmiha
ilenco/msgpack/, no date.

[32] Dan Goodin. Bridgefy, the messenger promoted for
mass protests, is a privacy disaster. Ars Technica, https:
//arstechnica.com/features/2020/08/bridgef
y, August 2020.

[33] Google. https://play.google.com/store/apps/d
etails?id=me.bridgefy.main, no date.

[34] Robert Grosse. https://github.com/Storyyeller
/enjarify, no date.

[35] Robert Grosse. https://github.com/Storyyeller
/Krakatau, no date.

[36] Thread Group. https://www.threadgroup.org/, no
date.

[37] Harry Halpin, Ksenia Ermoshina, and Francesca Mus-
iani. Co-ordinating developers and high-risk users of
privacy-enhanced secure messaging protocols. In Cas
Cremers and Anja Lehmann, editors, Security Standard-
isation Research - 4th International Conference, SSR
2018, Darmstadt, Germany, November 26-27, 2018, Pro-
ceedings, volume 11322 of Lecture Notes in Computer
Science, pages 56–75. Springer, 2018. doi: 10.1007/97
8-3-030-04762-7\_4. URL https://doi.org/10.1
007/978-3-030-04762-7_4.

[38] David A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.
273898.

[39] JetBrains. https://github.com/JetBrains/intel
lij-community/tree/master/plugins/java-dec
ompiler/engine, no date.

[40] John Kelsey. Compression and information leakage of
plaintext. In Joan Daemen and Vincent Rijmen, editors,
Fast Software Encryption – FSE 2002, volume 2365
of Lecture Notes in Computer Science, pages 263–276.
Springer, Heidelberg, February 2002. doi: 10.1007/3-
540-45661-9_21.

https://www.mdpi.com/1999-5903/11/4/99
https://www.mdpi.com/1999-5903/11/4/99
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s00145-020-09360-1
https://rfc-editor.org/rfc/rfc1951.txt
https://rfc-editor.org/rfc/rfc1952.txt
https://rfc-editor.org/rfc/rfc1952.txt
https://yaml.org/
https://msgpack.org/
https://github.com/bridgefy/bridgefy-android-sdk-sample/blob/56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md
https://github.com/bridgefy/bridgefy-android-sdk-sample/blob/56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md
https://github.com/bridgefy/bridgefy-android-sdk-sample/blob/56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md
https://github.com/bridgefy/bridgefy-android-sdk-sample/blob/56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/rockyou-withcount.txt.tar.gz
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/rockyou-withcount.txt.tar.gz
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/rockyou-withcount.txt.tar.gz
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/rockyou-withcount.txt.tar.gz
https://github.com/msgpack/msgpack-java
https://github.com/msgpack/msgpack-java
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/vmihailenco/msgpack/
https://github.com/vmihailenco/msgpack/
https://arstechnica.com/features/2020/08/bridgefy
https://arstechnica.com/features/2020/08/bridgefy
https://arstechnica.com/features/2020/08/bridgefy
https://play.google.com/store/apps/details?id=me.bridgefy.main
https://play.google.com/store/apps/details?id=me.bridgefy.main
https://github.com/Storyyeller/enjarify
https://github.com/Storyyeller/enjarify
https://github.com/Storyyeller/Krakatau
https://github.com/Storyyeller/Krakatau
https://www.threadgroup.org/
https://doi.org/10.1007/978-3-030-04762-7_4
https://doi.org/10.1007/978-3-030-04762-7_4
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine


[41] John Koetsier. Hong Kong protestors using mesh mes-
saging app China can’t block: Usage up 3685%. https:
//web.archive.org/web/20200411154603/https:
//www.forbes.com/sites/johnkoetsier/2019/0
9/02/hong-kong-protestors-using-mesh-messa
ging-app-china-cant-block-usage-up-3685/,
September 2019.

[42] Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK, 2008.
ISBN 978-0-521-86571-5. URL http://nlp.stan
ford.edu/IR-book/information-retrieval-boo
k.html.

[43] Angelo Prado, Neal Harris, and Yoel Gluck. Ssl, gone
in 30 seconds: A breach beyond crime. Black Hat USA,
2013, 2013.

[44] Tom Preston-Werner. https://toml.io/, no date.

[45] The Android Open Source Project. https://develo
per.android.com/studio/command-line/adb, no
date.

[46] Ole André V. Ravnås. https://frida.re/, no date.

[47] Juliano Rizzo and Thai Duong. The crime attack. In
Ekoparty, volume 2012, 2012.

[48] Mike Ryan. Bluetooth: With low energy comes low
security. In 7th USENIX Workshop on Offensive Tech-
nologies (WOOT 13), Washington, D.C., August 2013.
USENIX Association. URL https://www.usenix.o
rg/conference/woot13/workshop-program/pres
entation/ryan.

[49] SensePost. https://github.com/sensepost/objec
tion, no date.

[50] Bluetooth SIG. https://www.bluetooth.com/lear
n-about-bluetooth/recent-enhancements/mesh
/, no date.

[51] Signal. https://github.com/signalapp/libsign
al-protocol-java, no date.

[52] Signal. https://signal.org/, no date.

[53] Pallavi Sivakumaran and Jorge Blasco. A study of the
feasibility of co-located app attacks against BLE and a
large-scale analysis of the current application-layer se-
curity landscape. In Nadia Heninger and Patrick Traynor,
editors, USENIX Security 2019: 28th USENIX Security
Symposium, pages 1–18. USENIX Association, August
2019.

[54] skylot. https://github.com/skylot/jadx, no date.

[55] Mike Strobel. https://github.com/mstrobel/pr
ocyon, no date.

[56] The MITRE Corporation. https://cwe.mitre.org/
data/definitions/367.html, July 2021.

[57] Twitter – Bridgefy. https://twitter.com/bridge
fy/status/1168917929301348354, September 2019.
https://web.archive.org/web/20211010115025
/https://twitter.com/bridgefy/status/116891
7929301348354.

[58] Twitter – Bridgefy. https://twitter.com/brid
gefy/status/1268015807252004864, June 2020.
http://archive.today/uKNRm.

[59] Twitter – Bridgefy. https://twitter.com/bridge
fy/status/1216473058753597453, January 2020.
http://archive.today/x1gG4.

[60] Twitter – Bridgefy. https://twitter.com/brid
gefy/status/1268905414248153089, June 2020.
http://archive.today/odSbW.

[61] Twitter – Bridgefy. https://twitter.com/bridge
fy/status/1456292964750307330, November 2021.
https://web.archive.org/web/20220208195010
/https://twitter.com/bridgefy/status/145629
2964750307330.

[62] Twitter – Bridgefy. https://twitter.com/bridge
fy/status/1356750830955884552, February 2021.
https://web.archive.org/web/20210516231628
/https://twitter.com/bridgefy/status/135675
0830955884552.

[63] Twitter – Bridgefy. https://twitter.com/brid
gefy/status/1371507779299590144, March 2021.
https://web.archive.org/web/20210514094031
/https://twitter.com/bridgefy/status/137150
7779299590144.

[64] Twitter – Bridgefy. https://twitter.com/bridge
fy/status/1356680753338318859, February 2021.
https://web.archive.org/web/20210516231655
/https://twitter.com/bridgefy/status/135668
0753338318859.

[65] Paul C. van Oorschot. Computer Security and the Inter-
net: Tools and Jewels. Springer, Cham, 2020.

[66] Mathy Vanhoef and Tom Van Goethem. Heist: Http en-
crypted information can be stolen through tcp-windows.
In Black Hat US Briefings, Las Vegas, USA, 2016.

[67] Deutsche Welle. Afghanistan: How can messaging work
safely in an internet shutdown? https://www.dw.c
om/en/afghanistan-how-can-messaging-work-s

https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://toml.io/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://frida.re/
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://github.com/sensepost/objection
https://github.com/sensepost/objection
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/
https://github.com/signalapp/libsignal-protocol-java
https://github.com/signalapp/libsignal-protocol-java
https://signal.org/
https://github.com/skylot/jadx
https://github.com/mstrobel/procyon
https://github.com/mstrobel/procyon
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html
https://twitter.com/bridgefy/status/1168917929301348354
https://twitter.com/bridgefy/status/1168917929301348354
https://web.archive.org/web/20211010115025/https://twitter.com/bridgefy/status/1168917929301348354
https://web.archive.org/web/20211010115025/https://twitter.com/bridgefy/status/1168917929301348354
https://web.archive.org/web/20211010115025/https://twitter.com/bridgefy/status/1168917929301348354
https://twitter.com/bridgefy/status/1268015807252004864
https://twitter.com/bridgefy/status/1268015807252004864
http://archive.today/uKNRm
https://twitter.com/bridgefy/status/1216473058753597453
https://twitter.com/bridgefy/status/1216473058753597453
http://archive.today/x1gG4
https://twitter.com/bridgefy/status/1268905414248153089
https://twitter.com/bridgefy/status/1268905414248153089
http://archive.today/odSbW
https://twitter.com/bridgefy/status/1456292964750307330
https://twitter.com/bridgefy/status/1456292964750307330
https://web.archive.org/web/20220208195010/https://twitter.com/bridgefy/status/1456292964750307330
https://web.archive.org/web/20220208195010/https://twitter.com/bridgefy/status/1456292964750307330
https://web.archive.org/web/20220208195010/https://twitter.com/bridgefy/status/1456292964750307330
https://twitter.com/bridgefy/status/1356750830955884552
https://twitter.com/bridgefy/status/1356750830955884552
https://web.archive.org/web/20210516231628/https://twitter.com/bridgefy/status/1356750830955884552
https://web.archive.org/web/20210516231628/https://twitter.com/bridgefy/status/1356750830955884552
https://web.archive.org/web/20210516231628/https://twitter.com/bridgefy/status/1356750830955884552
https://twitter.com/bridgefy/status/1371507779299590144
https://twitter.com/bridgefy/status/1371507779299590144
https://web.archive.org/web/20210514094031/https://twitter.com/bridgefy/status/1371507779299590144
https://web.archive.org/web/20210514094031/https://twitter.com/bridgefy/status/1371507779299590144
https://web.archive.org/web/20210514094031/https://twitter.com/bridgefy/status/1371507779299590144
https://twitter.com/bridgefy/status/1356680753338318859
https://twitter.com/bridgefy/status/1356680753338318859
https://web.archive.org/web/20210516231655/https://twitter.com/bridgefy/status/1356680753338318859
https://web.archive.org/web/20210516231655/https://twitter.com/bridgefy/status/1356680753338318859
https://web.archive.org/web/20210516231655/https://twitter.com/bridgefy/status/1356680753338318859
https://www.dw.com/en/afghanistan-how-can-messaging-work-safely-in-an-internet-shutdown/a-59018976
https://www.dw.com/en/afghanistan-how-can-messaging-work-safely-in-an-internet-shutdown/a-59018976


afely-in-an-internet-shutdown/a-59018976,
August 2021. https://web.archive.org/web/2021
1008155150/https://www.dw.com/en/afghanista
n-how-can-messaging-work-safely-in-an-inte
rnet-shutdown/a-59018976.

[68] Jianliang Wu, Yuhong Nan, Vireshwar Kumar,
Dave (Jing) Tian, Antonio Bianchi, Mathias Payer,
and Dongyan Xu. BLESA: Spoofing attacks against
reconnections in bluetooth low energy. In 14th
USENIX Workshop on Offensive Technologies (WOOT
20). USENIX Association, August 2020. URL
https://www.usenix.org/conference/woot20/p
resentation/wu.

[69] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang
Lin, and Xinwen Fu. Breaking secure pairing of
bluetooth low energy using downgrade attacks. In Srd-
jan Capkun and Franziska Roesner, editors, USENIX Se-
curity 2020: 29th USENIX Security Symposium, pages
37–54. USENIX Association, August 2020.

[70] J. Ziv and A. Lempel. A universal algorithm for sequen-
tial data compression. IEEE Transactions on Informa-
tion Theory, 23(3):337–343, 1977. doi: 10.1109/TIT.19
77.1055714.

All links were last checked on 2022-02-13.

A Broadcast Message Distinguisher

We formalise the game IND-CPA(q) analogous to [7, Sec-
tion 5.3] between an adversary A and a challenger C that
acts as a Left-or-Right (LoR) oracle. In the following game,
let KGen,Enc, and Dec be the key generation function, the
encryption function, and the decryption function employed
by Bridgefy respectively, and SE = (KGen,Enc,Dec) the
symmetric encryption scheme. Note that Enc includes the
compression using gzip, and Dec the decompression. Further,
let `(x) denote the length of string x and xy the repetition of x
with y copies.

Game IND-CPA(q):

1. C generates a key K←$KGen and a bit b←$ {0,1}
uniformly at random.

2. A submits at most q queries to C . In the ith query,
A chooses two payload contents πi,0,πi,1, such that
B = `(πi,0) = `(πi,1), and submits (πi,0,πi,1) to C . C
computes ci = EncK(πi,b) and returns ci to A .

3. A outputs a guess b̂ ∈ {0,1}.

We denote the advantage of A in this game as

AdvIND-CPA(q)
SE (A ,B) = 2 · |Pr(b̂ = b)−1/2|.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

log2 B [byte]

A
dv

IN
D
−

C
PA

(q
)

SE
(A

,B
) q = 2

q = 1

Figure 8: The advantage of A to win the game IND-CPA(q)
for different B.

With q ≥ 2, A can submit the pair (π1,0,π1,0) in the 2nd
query, and compare c1 = EncK(π1,b) to c2 = EncK(π1,0): A
can infer from matching blocks in c1 and c2 that the underly-
ing gzip data also matches, suggesting that b = 0. Note that
because we do not assume Enc to be deterministic, c1 and c2
do not match in every round of the game. We implemented
this attack using a program that simulates a Bridgefy network
with sufficient accuracy but without the physical setup. We
measure AdvIND-CPA(2)

SE (A ,B) for different values of B in Fig-
ure 8 by playing the game n = 218 times each. The simulation
confirms that Bridgefy’s scheme is not IND-CPA secure.

But Bridgefy’s scheme is even weaker: since compression
precedes encryption, A can draw conclusions about the plain-
text based on the ciphertext, if only the length of the plaintext
is known. A can use this to win the game IND-CPA(1): A
submits a single query (π0,π1) in Step 2, where π1 contains
duplicate data, but π0 does not. In particular, we let π0 be a
random string, while π1 is 0B, where B = `(π0) = `(π1).

Since π1 is a string with duplicate data that can be com-
pressed efficiently with gzip but π0 is not, we can expect that
`(EncK(π0))> `(EncK(π1)) for increasing B. The difference
in length of the compression output propagates to the length
of the encryption output, such that b is leaked: in Step 3, A
outputs

b̂ =

{
0, if `(c)> `(EncK′ (π0))+`(EncK′ (π1))

2
1, otherwise.

Here, EncK′(π0) and EncK′(π1) are not derived by making a
query to C . Instead, A chooses an arbitrary key K′ and runs
EncK′ locally. While K is unknown to A , an arbitrary key K′

can be chosen since only the output length is of interest. The
userIds, sender’s display name and timestamps used to derive
c are also unknown to A , and hence the values used by A will
diverge from those used by C . This introduces more noise to
the compression length.

As before, we measure AdvIND-CPA(1)
SE (A ,B) for different

B in Figure 8 by playing the game n = 218 times each. At

https://www.dw.com/en/afghanistan-how-can-messaging-work-safely-in-an-internet-shutdown/a-59018976
https://web.archive.org/web/20211008155150/https://www.dw.com/en/afghanistan-how-can-messaging-work-safely-in-an-internet-shutdown/a-59018976
https://web.archive.org/web/20211008155150/https://www.dw.com/en/afghanistan-how-can-messaging-work-safely-in-an-internet-shutdown/a-59018976
https://web.archive.org/web/20211008155150/https://www.dw.com/en/afghanistan-how-can-messaging-work-safely-in-an-internet-shutdown/a-59018976
https://web.archive.org/web/20211008155150/https://www.dw.com/en/afghanistan-how-can-messaging-work-safely-in-an-internet-shutdown/a-59018976
https://www.usenix.org/conference/woot20/presentation/wu
https://www.usenix.org/conference/woot20/presentation/wu


B = 26, A is already able to make a correct guess in each run
of the game.

B Network Simulation Considerations

In this section, we discuss how we performed simulations
with sufficient accuracy for our attacks. We implemented
the program ptxtrecov in Go. ptxtrecov can repeatedly
simulate Bridgefy networks, where a single node sends a
broadcast message to other peers.

In the simulation phase, a large number of broadcast pack-
ets are generated for each payload content p at each hop h.
The lengths of these packets are then recorded in a map which
counts how often a length is observed for p at h.

While Bridgefy uses the official MessagePack
library for Java [29], we used the Go library
vmihailenco/msgpack [31]. To generate data repres-
entative for the Bridgefy application, we need to be especially
careful in the serialisation step: MessagePack is somewhat
flexible concerning the format used to encode a type. For
instance, we found that Bridgefy converts timestamps with
the float64 format of MessagePack, although they could be
converted with their dedicated timestamp extension format.
Moreover, our Go library did not convert certain integers
to their smallest possible format, as is intended by the
MessagePack specification. To account for these differences,
the types for these fields needed to be forced using our
library.

The display name can have variable length, and so can the
respective field of a packet. Because we draw conclusions
based on the distribution of packet lengths, we need to ensure
that the values we choose for this field do not cause a bias in
the derived distributions. We decided to randomly choose the
display names from a list composed of the 64 most common
female and 64 most common male English names with a
length of 5 characters.

We used a bespoke pseudo-random generator aesrand
based on AES in counter mode to generate all the UUIDs
needed in packets. We designed aesrand to be seeded and
used it carefully so as to avoid both blocking and overlapping
sequences of outputs in our multi-threaded simulations.

We also used aesrand to produce timestamps and time
differences. In all experiments, we start at a constant base
time T , given as a UNIX timestamp in microseconds. We
can assume A to know T . The time at which a broadcast
message is assumed to be sent (the ds field in the payload)
is t0 = T +∆0, where ∆0 is a random 24 bit integer. ∆0 is
drawn for each broadcast message individually. Note that
using 24 bit for ∆0 allow the attack to span over more than
4 h.

The packet’s creation field is calculated as t1 = t0 +∆1,
where 4≤ ∆1 < 64. That is consistent with the behaviour of
the Bridgefy messenger in the real world. The small delay

occurs when the application passes the message on to the
SDK for processing.

At each hop, the added field is set to the time when the
packet is queued. The delay now reflects the time it takes
to transmit the message via Bluetooth to the next hop and
is, therefore, longer than ∆1. We calculate the field as t ′2 =
t2 +∆2, where 128≤ ∆2 < 512, and t2 is the field’s value in
the previous step.


	Introduction
	Contributions
	Disclosure


	Preliminaries
	Methodology

	Bridgefy Architecture
	Overview
	Software Components
	Packet Types
	Handshake
	Packet Encoding
	Packet Encryption
	Devices and Sessions

	Re-evaluation of Previous Attacks
	Active Attacker-in-the-middle (MITM)
	Impersonation in the Broadcast Chat
	Denial of Service (DoS)
	Building a Social Graph
	Historical Proximity Tracing

	Breaking Confidentiality of One-to-One Messages
	Attacks on Broadcast Messages
	Distinguishing Attack
	Plaintext Recovery Attack
	Core Idea
	Simulation Phase
	Attack Phase

	Attacking Single-Byte Payloads
	Equal-Length Payloads
	Results

	Discussion
	Broadcast Message Distinguisher
	Network Simulation Considerations

